ObsLocTap: Publishing the Rubin Observing Schedule William O'Mullane 2024-01-25

1 Introduction

Vera C. Rubin Observatory is required to publish the observing schedule nightly. Following our VO first policy, we choose ObsLocTap (Salgado et al., 2021)¹ as the protocol.

This short document discusses some design details.

2 Requirements

LSE-30 (OSS) requires publication at least two hours ahead of observing.

LSE-61 (DMSR) has DMS-REQ-0353 Specification: A service shall be provided to publish to the community the next visit location and the predicted visit schedule provided by the OCS. This service shall consist of both a web page for human inspection and a web API to allow automated tools to respond promptly.

In DMTN-199 the agencies insist we publish a schedule 24 hours ahead of observing. The lack of fidelity of such a schedule is acknowledged by the agencies.

Though an official LCR should be made it is clear we must provide the schedule 24 hours in advance.

3 Design

There are three parts to this:

1. The forecast which comes from the scheduler.

¹https://www.ivoa.net/documents/ObsLocTAP/

- 2. The history of which observations were made which we will need to construct.
- 3. Publishing compliant with the IVOA ObsLocTap spec (Salgado et al., 2021).

3.1 Scheduler forecast

The scheduler puts out an event record with a number of observations in it². Currently the requirement is 2 hours and the system is built around that kind of window. The observing conditions and schedule are felt to be relatively stable on that time frame. But let us assume there will be a record for 24 hours.³ This shorter record may be produced as frequently as every observation is made with an updated schedule depending on weather etc. Basically when the scheduler has an update a new event is published to SAL.

These events are available at the USDF in the EFD and the last may be found with this influx query:

The current structure of this record is a bunch of columnar arrays representing a time and pointing with the values : mjd, ra, dec, rotSkyPos, nexp. It is understood more values may follow such as field/tile and filter. The potential mapping of these values to the ObsLocTap Characterization is given in Table 1.

It seems a separate 24 hour schedule produced each night is preferable to the scheduler team. This makes the forecast easy. There would then also be several shorter predictedSchedule events to deal with.

We are required to give 24 hours notice but that is not yet in the baseline requirements.

3.1.1 Handling the schedule

We will need to look at each schedule event record in the EFD as it arrives. For our purposes either polling each 30s or having an influx callback on the EFD at USDF would work.

 $^{^{2} \}verb+https://ts-scheduler.lsst.io/developer-guide/developer-guide.html#operation-modes$

³At 24 hours before we would, at the start of the observing night, need to produce the schedule *for the next night*.

An initial prototype could simply publish this to a web page or JSON file. This may be a useful tool in any case⁴.

For ObsLocTap a separate record must be created for each pointing in a database lets call this the ObsLocTAP database in this document. ObsLocTap refers to such an entry as a Characterization. Putting this in a postgress database would seem feasible and allow a fairly standard TAP implementation to be deployed atop. Postgress is already available at USDF. IVOA ObsLocTap considers a table called obsplan and the schema is fixed in the spec (reproduced in Appendix A). The schema shall be defined in the schema repository ⁵ allowing us to generate the SQL from the description in the repo.

Based on the required schema of ObsLocTap (reproduced in Appendix A our schema and mapping to the fields shown in subsection 3.1 is provided in Table 1.

So let us assume we shall have a postgress table with the IVOA fields as in Table 1. As each new event record is seen the new pointings not already in the database must be added. If there is a 24 hour schedule some of the new pointings will replace existing ones, the existing entries should be marked unscheduled. The simple approach we would follow for new predictedSchedule events is to unschedule any existing Characterization in the time span of the new event.

3.2 History of observations

Next we need to record which observations were made to fill the ObsDataSet. There is no ID in the scheduler forecast so there is no explicit matching of observation to forecast. There is no known plan to add such an ID. For every observation made we shall have to do either:

- If there is a record in the ObsLocTAP database for this pointing mark it as done (set execution_status=Performed). We may want to duplicate more than the time to this table but the exposure ID allows one to get any info we needed from the butler registry. Initially at least we will stick with the schema in the ObsLocTap spec.
- 2. It there is no record create a record with all the forecast field blank.⁶ If there is a record around this time but not this pointing/filter mark that one execution_status=Unscheduled

⁴A start has been made in https://github.com/lsst-dm/obsloctap

⁵SDM Schema repo https://github.com/lsst/sdm_schemas/tree/main/yml

⁶It is not clear the ObsLocTap requires this.

Column Name	Mapping to Rubin
t_planning	logevent_predictedSchedule.mjd
target_name	this will always be empty
obs_id	datald['exposure'] or obsid from camera - initially some random
	number
obs_collection	
s_ra	ra
s_dec	dec
s_fov	3
s_region	we could do this though not sure we should store it
s_resolution	0.2 arcsec
t_min	dimensionRecord.timespan.start
t_max	dimensionRecord.timespan.end
t_exptime	t_max - t_min
t_resolution	15s
em_min	Start in spectral coordinates - filter low edge in meters
em_max	Stop in spectral coordinates - filter high edge in meters
em_res_power	
o_ucd	phot.flux.density?
pol_states	NULL
pol_xel	0
facility_name	Vera C. Rubin Observatory
instrument_name	datald['instrument']
t_plan_exptime	logevent_predictedSchedule.mjd
category	Fixed
priority	1
execution_status	One of the following values: Scheduled, Unscheduled, Performed,
	Aborted
tracking_type	Sidereal

TABLE 1: IVOA Obsplan columns, proposed mapping to Rubin metadata

This table would now overlap the exposure log but it is not obvious we should combine these as they serve slightly different purposes. It is further noted by the scheduler team that very few of the scheduled observations would be made as planned. The

3.2.1 Was the observation made?

There is probably no clear cut answer to this given that there is no ID associated with the forecast. If we assume users of ObsLocTap cared about co-observing then their object could be anywhere in the $9deg^2$ area around the pointing. For a first stab lets say the observation was made if all the following are true :

- 1. The filter used matched the filter in the forecast. This would seem to fairly important but perhaps it is not I am unsure of the probability of doing the scheduled observation with the wrong filter. It seems unlikely.
- 2. The ra, dec of the forecast matches (the commanded position should match).
- 3. The shutter close time of the observation was within 30s of the mjd of the forecast. We are unlikely to be exactly on time so one exposure error seems reasonable.

This is somewhat arbitrary but at least provides a codeable starting point for discussion.

3.2.2 Finding the observations

The butler at the USDF is ingesting the images from the summit within a minute or so. The butler registry can then provide the metadata needed for subsubsection 3.2.1 Again whether this is polling or call back should be discussed. Some assistance from a butler guru will also be needed to work out an efficient query. The prompt processing is trigger at USDF would provide the correct event for doing this for example since it fires on each new image.

3.3 Deployment

It seems the USDF is the correct place for a small process to run which populates the ObsLoc-TAP database and exposes the obsplan table for the TAP service (subsection 3.4). This should

be deployed with $Phalanx^7$.

3.4 Publishing

Assuming we constructed and populate the obsplan table in the previous sections publishing means having a TAP service for that table. We already use CADC TAP on Qserv and there is a version for Postgress so this step may be fairly straight forward.

Once the TAP service is available then it must be registered. This is describe in section 5 of the spec (Salgado et al., 2021).

4 Implementation

There are two parts to this implementation:

- 1. The postgress database and populating it.
- 2. Serving that up via TAP.

No 2. here is well understood - we have TAP services so we put one in front of the ObsLocTAP database

There are some choices to be made concerning No. 1.

Frossie provided the simple diagram Figure 1 which captures the ideas.

4.1 Create the table

The yaml was added to sdm_schema so Felis may be used to create the schema.

I did not find Felis on pips so I grabbed git@github.com:lsst/felis.git and installed it with pip install ..

⁷https://phalanx.lsst.io

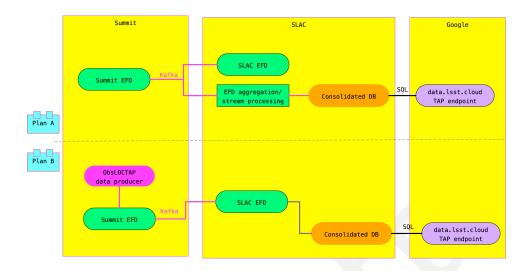


FIGURE 1: Choices on how to populate the postgress database for ObsLocTap.

l also cloned git@github.com:lsst/sdm_schemas.git.

This allowed the Felis execution, database login and table creation:⁸ Felis create-all –engine-url="\$engine_url" –dry-run sdm_schemas/yml/obsloctap.yaml > obsloctap.sql

psql -h usdf-butler-session.slac.stanford.edu -U rubin lsstdb1

lsstdb1=> create schema obsloctap; lsstdb1=> create schema obsloctap_dev;

SET SEARCH_PATH = obsloctap_dev; i obsplan.sql SET SEARCH_PATH = obsloctap; i obsplan.sql

Can check the default schema an if it exists with: show SEARCH_PATH ; dt

⁸ivoa. was removed from th DDL

4.2 **Populating the ObsLocTAP database**

Initially at least we should try plan A and do all of this at the USDF. The EFD messages are replicated there so we can pick up the scheduler messages and process them via a stream processor in Kafka (within Sasquatch).

The 24 hour schedule should probably get a new topic to make it distinct from the normal operations - this has to be agreed with scheduler/summit. This will be processed to create schedule entries.

Then we will process 1sst.sal.Scheduler.logevent_predictedSchedule to update/create schedule entries.

Finally we will look at 1sst.sal.ATHeaderService.logevent_largeFileObjectAvailable which will give us a pointer to the header (url field) and using astro_metadata_translator we can get r obsid, exposure_id, filter and update the ObsLocTAP database appropriately.

4.3 TAP service

There is already a ticket DM-39729 for the creation of the Felis schema. Another is needed to expose this via tap.

Along the lines of separation of security concerns this would be deployed on the Cloud (US DAC) not in USDF.

Currently the endpoint /schedule will return the last 1K lines from the Obsplan table as a json file. This is deployed only on usdfdev as of Dec 2023. https://usdf-rsp-dev.slac.stanford.edu/obsloctap/schedule lt only contains test rows.

4.4 Phalanx

Deployment is with Phalanx see https://phalanx.lsst.io/index.html. Specifically https://phalanx.lsst.io/applications/obsloctap/index.html.

A Obsplan table from ObsLocTap

The obpsplan tabel schema from the "Observation Locator Table Access Protocol Version 1.0" is provided here for ease of reference.

Column Name	Description	Constraint Constraint	•
t_planning	Time in MJD when this observation has been added or modified into the planning log	not null	
target_name	Astronomical object observed, if any	RL A T	
obs_id	Observation ID	not null of	P/
obs_collection	Name of the data collection		
s_ra	Central right ascension, ICRS		
s_dec	Central declination, ICRS		
s_fov	Diameter (bounds) of the covered region		
s_region	Sky region covered by the data product (expressed in ICRS frame)		
s_resolution	Spatial resolution of data as FWHM		
t_min	Start time in MJD	not null for execution_status Scheduled or Performed	status ed
t_max	Stop time in MJD	not null for execution_status Scheduled or Performe	_status e d
t exptime	Total exposure time	not null for execution_status	Status
_		Scheduled or Pertormed	eg
t_resolution	Temporal resolution FWHM		ublisł
em_min	Start in spectral coordinates		iing t
em_max	Stop in spectral coordinates		he R
em_res_power	Spectral resolving power		ubin
o_ucd	UCD of observable (e.g., phot.flux.density, phot.count, etc.)		Obsei
pol_states	List of polarization states or NULL if not applicable		ving
pol_xel	Number of polarization samples		Sche
facility_name	Name of the facility used for this observation	not null	dule
instrument_name	Name of the instrument used for this observation		DM
t_plan_exptime	Planned or scheduled exposure time		TN-2
category	Observation category. One of the following values: Fixed, Coordinated, Window, Other	not null	63
priority	Priority level { 0, 1, 2}	not null	Late
execution_status	One of the following values: Planned, Scheduled, Unscheduled, Performed, Aborted	not null	st Re
tracking_type	One of the following values: Sidereal, Solar-system-object-tracking, Fixed-az-el-transit	not null	vision
	TABLE 2: ObsPlan columns description		2024-01-2
			5

B References

- [LSE-30], Claver, C.F., The LSST Systems Engineering Integrated Project Team, 2018, *Observatory System Specifications (OSS)*, LSE-30, URL https://ls.st/LSE-30
- [LSE-61], Dubois-Felsmann, G., Jenness, T., 2019, Data Management System (DMS) Requirements, LSE-61, URL https://lse-61.lsst.io/, Vera C. Rubin Observatory
- [DMTN-199], O'Mullane, W., Allbery, R., AlSayyad, Y., et al., 2023, *Rubin Observatory Data Security Standards Implementation*, DMTN-199, URL https://dmtn-199.lsst.io/, Vera C. Rubin Observatory Data Management Technical Note
- Salgado, J., Ibarra, A., Ehle, M., et al., 2021, Observation Locator Table Access Protocol Version 1.0, IVOA Recommendation 24 July 2021, ADS Link

Acronym	Description
API	Application Programming Interface
CADC	Canadian Astronomy Data Centre
DAC	Data Access Center
DB	DataBase
DESC	Dark Energy Science Collaboration
DM	Data Management
DMS	Data Management Subsystem
DMS-REQ	Data Management System Requirements prefix
DMSR	DM System Requirements; LSE-61
DMTN	DM Technical Note
EFD	Engineering and Facility Database
FWHM	Full Width at Half-Maximum
ICRS	International Celestial Reference Frame
IVOA	International Virtual-Observatory Alliance

C Acronyms

JSON	JavaScript Object Notation
LCR	LSST Change Request
LSE	LSST Systems Engineering (Document Handle)
MJD	Modified Julian Date (to be avoided; see also JD)
OCS	Observatory Control System
OSS	Observatory System Specifications; LSE-30
ObsLocTAP	Observation Locator Table Access Protocol (IVOA standard)
SAL	Service Abstraction Layer
SQL	Structured Query Language
TAP	Table Access Protocol (IVOA standard)
UCD	Unified Content Descriptor (IVOA standard)
US	United States
USDF	United States Data Facility
VO	Virtual Observatory